Randomness by Design

نویسنده

  • William A. Dembski
چکیده

“Anyone who considers arithmetical methods of producing random digits is, of course, in a state of sin.”1 John von Neumann’s famous dictum points an accusing finger at all who set their ordered minds to engender disorder. Much as in times past thieves, pimps, and actors carried on their profession with an uneasy conscience, so in this day scientists who devise random number generators suffer pangs of guilt. George Marsaglia, perhaps the preeminent worker in the field, quips when he asks his colleagues, “Who among us has not sinned?” Marsaglia’s work at the Supercomputer Computations Research Institute at Florida State University is well-known. Inasmuch as Marsaglia’s design and testing of random number generators depends on computation, and inasmuch as computation is fundamentally arithmetical, Marsaglia is by von Neumann’s own account a sinner. Working as he does on a supercomputer, Marsaglia is in fact a gross sinner. This he freely admits. Writing of the best random number generators he is aware of, Marsaglia states, “they are the result of arithmetic methods and those using them must, as all sinners must, face Redemption [sic] Day. But perhaps with better understanding we can postpone it.”2 Despite the danger of being branded a heretic, I want to argue that randomness entails no moral deficiency. I will even advocate that random number generators be constructed with reckless abandon–though a reckless abandon

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TESTING FOR “RANDOMNESS” IN SPATIAL POINT PATTERNS, USING TEST STATISTICS BASED ON ONE-DIMENSIONAL INTER-EVENT DISTANCES

To test for “randomness” in spatial point patterns, we propose two test statistics that are obtained by “reducing” two-dimensional point patterns to the one-dimensional one. Also the exact and asymptotic distribution of these statistics are drawn.

متن کامل

A Randomness Test for Stable Data

In this paper, we propose a new method for checking randomness of non-Gaussian stable data based on a characterization result. This method is more sensitive with respect to non-random data compared to the well-known non-parametric randomness tests.

متن کامل

A ROBUST OPTIMIZATION MODEL FOR BLOOD SUPPLY CHAIN NETWORK DESIGN

The eternal need for humans' blood as a critical commodity makes the healthcare systems attempt to provide efficient blood supply chains (BSCs) by which the requirements are satisfied at the maximum level. To have an efficient supply of blood, an appropriate planning for blood supply chain is a challenge which requires more attention. In this paper, we address a mixed integer linear programming...

متن کامل

Improving Tor security against timing and traffic analysis attacks with fair randomization

The Tor network is probably one of the most popular online anonymity systems in the world. It has been built based on the volunteer relays from all around the world. It has a strong scientific basis which is structured very well to work in low latency mode that makes it suitable for tasks such as web browsing. Despite the advantages, the low latency also makes Tor insecure against timing and tr...

متن کامل

Entropy Evaluation for Oscillator-Based True Random Number Generators

True random number generators (TRNGs) are crucial to the implementations of cryptographic algorithms and protocols. The quality of randomness directly influences the security of cryptographic systems. Oscillator-based sampling is popular in the design of TRNGs due to its nice properties of elegant structure and high speed. However, the credibility of randomness generated from high-speed oscilla...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1991